

Cleaning strategies for 3D-printed porous scaffolds used for bone regeneration fabricated via ceramic vat photopolymerization

Antonia Ressler, Setareh Zakeri, Piie Konnunaho, Martin Schwentenwein, Erkki Levänen, Erkka J. Frankberg

AffordBoneS Personalized and affordable multi-substituted calcium phosphate scaffolds

patient cases provided by Planmeca

-printing costumized scaffolds on CaraFab 7500 using previously optimized printing parameters

Collaboration with : **PLANMECA**

Prof. Erkki Levänen

Dr. Erkka Frankberg

Prof. Susanna Miettinen Dr. Martin Schweintenwein

Dr. Antonia Ressler

Pontus Degerlund PLANMECA

Cleaning challenge of porous scaffolds

- porous structures where the interconnected pores are intentionally designed to remain uncured
- the uncured slurry in these porous regions can become intricately trapped between the cured layers, complicating the cleaning process
- effectively removing the uncured slurry from within the intricate and porous geometries of the printed structures becomes a critical task as the presence of residue within the structure can obstruct pores during sintering
- biomedical implants —> pore characteristics are crucial for tissue integration and substance exchange.

Preliminary experiments

- Increasing the temperature is effective in lowering viscosity and improving slurry flowability, leading to enhanced cleaning of the as-printed structures
- the difference in viscosity of slurry at 50 and 60 °C was small, leading to the exclusion of 60 °C from further studies to mitigate any risk of thermal polymerization of the ceramic slurry during the cleaning process

Tampere University Tampere University of Applied Science

Morphological characterization - ultrasonication

LithaSol 80

- mass loss started at approximately 150 °C, primarily attributed to the diffusion and evaporation of additives, unreactive diluents and uncured slurry
- the degradation of the major cured organic components initiated around 250 °C
- the significant contrast in the TG curves between scaffolds treated with LithaSol 80 and DBE primarily lies in the initial stage of weight loss
- the observed difference in total mass loss (14.15%) between samples treated with Lithasol 80 and DBE implies the potential occurrence of chemical debinding during cleaning with DBE. However, further detailed examination is required to provide conclusive evidence

Tampere University Tampere University of Applied Sciences

Morphological characterization - soaking

side view cross-section b a 48h \$ S80 10 µm 72h 5 ______ 96h S S80 48h 5 DBE 72h S DBE 96h DBE

Morphological characterization – sintered samples

Tampere University Tampere University of Applied Sciences

Conclusion...

Thank you for your attention!

antonia.ressler@tuni.fi

AffordBoneS Personalized and affordable multi-substituted calcium phosphate scaffolds

