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1. Tausta ja tavoitteet 
Tuotantokoneiden kunnonvalvonta perustuu monissa teollisuusympäristöissä yhä pitkälti 
henkilöstön kokemukseen, havaintoihin ja arvioon. Esimerkiksi sahanterän kulumista arvioidaan 
kuulon ja leikkuujäljen perusteella. Tällainen subjektiivinen arviointi toimii kokeneiden 
työntekijöiden käsissä, mutta siihen liittyy vaihtelua, epämääräisyyttä, sekä riski liian myöhään 
tai varmuuden vuoksi tehtyihin huoltotoimiin. 

Tässä pilotissa tavoitteena oli kehittää ja testata sahanterän kunnonvalvontaan soveltuvaa 
matalakustannuksista IoT-ratkaisua käytännön tuotantoympäristössä. Kohdeyritys Skaala IFN Oy 
oli kiinnostunut mahdollisuudesta tunnistaa automaattisesti terän vaihtokunnon lähestyminen, 
mikä mahdollistaisi kunnossapidon suunnittelun aiempaa tarkemmin ja resurssitehokkaammin. 

Pilotissa yhdistettiin kaksi alueellista kehityshanketta: 

• MOI Hub: keskittyi anturipohjaiseen datankeruuseen ja tekniseen toteutukseen, 

• vAI:lla tuottavuutta: vastasi kerätyn datan analysoinnista ja koneoppimisen 
hyödyntämisestä. 

Yhteistyön tavoitteena oli selvittää, voidaanko sahan toiminnasta kerättävän tärinädatan 
perusteella ennakoida terän kulumista ja löytää mittaustietoon perustuva vaihtokriteeri. Tämä 
loisi perustan myöhemmälle jatkokehitykselle, jossa terän kunnonvalvonta voitaisiin 
automatisoida osaksi tuotantolinjaa. 

MOI Hub -projektin näkökulmasta pilotin tavoitteena oli tuoda matalakustannuksinen IoT-
teknologia osaksi käytännön teollista ympäristöä ja testata sen soveltuvuutta konekunnon 
etämittaamiseen. Erityistä painoarvoa annettiin laiteratkaisun kustannustehokkuudelle, 
asennettavuudelle ja mahdollisuudelle hyödyntää avoimia alustoja (esim. Node-RED, InfluxDB). 
Lisäksi projektissa haluttiin testata pilvipohjaista infrastruktuuria datan keruuseen ja 
tarkasteluun siten, että se on toistettavissa ja sovellettavissa myös muissa tuotantopisteissä. 

vAI:lla tuottavuutta -projektin tavoitteena oli puolestaan hyödyntää tekoälypohjaisia 
analyysimenetelmiä, jotka tukevat pk-yrityksiä tuotantonsa tehokkuuden kehittämisessä. Tässä 
tapauksessa pyrittiin selvittämään, voidaanko sahanterän tärinätiedosta tunnistaa kulumisen 
merkkejä ja rakentaa tietoon perustuva päätöksenteon tuki terän vaihtotarpeen arviointiin. 
Tarkoituksena ei ollut luoda valmista järjestelmää, vaan tunnistaa potentiaali ja mallintaa 
ensimmäinen analyysiputki tulevaa kehitystä varten. 

Roolijako 
Pilotin toteutuksessa vastuut jaettiin selkeästi kahden projektin kesken, siten että kumpikin 
osapuoli keskittyi omaan osaamisalueeseensa. MOI Hub vastasi teknisestä toteutuksesta, 
mukaan lukien anturilaitteiston suunnittelu, asentaminen ja datan kerääminen 
tuotantoympäristöstä. Lisäksi MOI Hub ylläpiti pilvipohjaista infrastruktuuria, joka mahdollisti 
datan siirron, tallennuksen ja visualisoinnin reaaliaikaisesti. 

vAI:lla tuottavuutta -hankkeen rooli painottui datan analyysiin ja tulkintaan. Hanke vastaanotti 
MOI Hubin tuottaman mittausdatan, yhdisti siihen manuaalisesti kerätyn metadatan (terän 
vaihtotiedot) ja toteutti analyysin, jossa pyrittiin tunnistamaan yhteyksiä koneen värinäprofiilin ja 
terän kunnon välillä. Tavoitteena oli tuottaa analyysituloksia, joiden perusteella voidaan jatkossa 
arvioida terän vaihtotarve objektiivisesti mittausdatan perusteella. 



Yhteistyö toteutettiin siten, että ratkaisut olivat toistettavissa ja sovellettavissa myös muissa 
vastaavissa käyttökohteissa. Roolijaon ansiosta eri näkökulmat – tekninen toteutus ja 
datalähtöinen analyysi – saatiin yhdistettyä yhtenäiseksi kokeiluksi. 

2. Tekninen toteutus: Sensorointi ja datankeruu (MOI 
Hub) 
Sahanterän kunnonvalvontaa varten toteutettiin matalakustannuksinen sensoriratkaisu, joka 
perustui kolmiakseliseen kiihtyvyysanturiin. Anturiyksikkö oli kotelossa, joka mahdollisti laitteen 
kiinnittämisen tuotantokäytössä olevan sahan kylkeen. Kotelointi mahdollisti mekaanisesti 
vakaan mittauspisteen joka pystyy keräämään sahan rungosta tärinää. 

Mittaus toteutettiin laitteistolla, joka keräsi kiihtyvyysdataa 400 Hz:n näytteenottotaajuudella. 
Mittauslogiikka perustui liukuvaan puskuriin (ring buffer), jonka avulla anturidataa kerättiin 30 
sekunnin ajan kerrallaan. Tämän jälkeen data pakattiin JSON-muotoon ja lähetettiin HTTP POST -
pyynnöllä langattoman verkon kautta MOI Hubin pilvipalvelimeen. Laitteisto siirtyi tämän jälkeen 
10 minuutin lepotilaan, minkä jälkeen seuraava mittausjakso käynnistyi automaattisesti. 

Datan vastaanotto tapahtui MOI Hubin pilvi-infrastruktuurissa, joka koostui Node-RED-
alustasta, InfluxDB-aikajonotietokannasta ja Grafana-visualisointityökalusta. Data tallennettiin 
tietokantaan yksittäisinä riveinä, sisältäen aikaleiman ja kolmiakselisen kiihtyvyyden arvot (x, y, 
z). Sensorilta, jonka tunniste oli 94ff, kerättiin mittausdataa noin neljän viikon ajan ajanjaksolla 
17.2.2025–14.3.2025. Yksittäinen mittausjakso tuotti keskimäärin noin 12 000 riviä 
kiihtyvyysdataa per akseli (yhteensä n. 36 000 arvoa per jakso). 

Aikaleimat tallentuivat tietokantaan millisekunnin tarkkuudella, mikä ei riitä erottamaan 400 Hz:n 
mittausjakson yksittäisiä näytteitä (~2,5 ms välein). Tämän seurauksena aikaleimat pyöristyvät ja 
osa näytteistä saa väärän kellonajan, mikä näkyy ns. ajoituksellisena jitterinä(huojuntana). Itse 
mittausprosessi on tasainen, mutta tallennusresoluution vuoksi näytteenottovälit näyttäytyvät 
hieman epätasaisina. Tästä huolimatta data oli analyysitarkoituksiin riittävän laadukasta. Mutta 
tämä on syytä huomioida tulevaisuuden toteutuksissa. 

Mittausdataan yhdistettiin manuaalisesti kirjattua metadataa sahan terän vaihtotapahtumista, 
jotka sisälsivät päivämäärän ja kellonajan. Tämä yhdistetty aineisto vietiin analyysiä varten CSV-
muodossa vAI:lla tuottavuutta -hankkeen käyttöön. Alkuvaiheessa tiedostot tuotettiin Grafana-
ympäristön ja InfluxDB:n Chronograf-käyttöliittymän avulla, mutta myöhemmin päädyttiin 
käyttämään erillistä Python-skriptiä, jolla aineisto voitiin tuottaa hallitummin ja tarkemmin. 

Alustava data-analyysi ja tulkinta 
Ensimmäinen vaihe analyysissä oli visuaalinen tarkastelu (Kuva 1) mittausdatan 
aikakäyttäytymisestä. Erityisesti Y-akselin kiihtyvyysdatassa havaittiin selkeästi sinimuotoista 
värähtelyä. Värähtely ei ollut yksittäinen tasajaksoinen siniaalto, vaan signaalissa oli 
havaittavissa moduloitua käyttäytymistä, jossa korkeamman taajuuden värähtely (n. 100 Hz) 
esiintyi vaihtelevan amplitudin sisällä. Tämä viittaa siihen, että signaaliin vaikuttaa 
samanaikaisesti useita eri taajuuksia tuottavia mekaanisia tai prosessilähtöisiä tekijöitä. 



 

Kuva 1. Esimerkki kerätystä aikatasodatan jaksosta. 

Tarkennettu visualisointi osoitti, että yksittäisen mittausjakson aikana esiintyi nopeaa 
sinimuotoista värähtelyä, mutta sen amplitudi vaihteli jaksollisesti muutaman sekunnin 
jaksoissa. Nämä hitaammat vaihtelut eivät välttämättä muodosta itsenäistä matalataajuista 
värähtelyä vaan vastaavat amplitudimodulaatiota, jossa koneen toiminnasta johtuvat 
kuormitusvaihtelut muokkaavat tärinän voimakkuutta ajassa. Tällaista käyttäytymistä voi 
aiheuttaa esimerkiksi nivelakselin epätasapaino, syöttömekanismin rytminen toiminta tai 
leikkuuprosessin vaihtelu. 

Tuotantoympäristössä käytössä olevan sahan voimansiirtoon kuuluu nivelakseli, jonka 
mekaaniset ominaisuudet – kuten välys, kohdistus tai kuluminen – voivat aiheuttaa jaksottaista 
tärinää, joka näkyisi mittausdatassa nimenomaan modulaationa, ei itsenäisenä sinimuotoisena 
komponenttina. 

Signaalista suoritettiin myös Fourier-muunnos (FFT), jonka tulokset vahvistivat visuaaliset 
havainnot. Taajuusspektrissä (Kuva 2) oli nähtävissä useita piikkejä, joista merkittävimmät 
sijaitsivat noin: 

• ~50 Hz: mahdollinen sähköverkkokomponentti tai moottorin pyörimisnopeuteen liittyvä 
aliääni. 

• ~100 Hz: todennäköinen päävärähtelykomponentti, joka liittyy sahan pyöriviin osiin, 
kuten teriin tai voimansiirtoon. 

• ~150 Hz ja ~200 Hz: mahdollisia harmonisia komponentteja tai toisen terän aiheuttamia 
taajuuksia, mikäli ylä- ja alaterä pyörivät hieman eri nopeudella. 

• alle 2 Hz: matalataajuisia piirteitä, jotka todennäköisesti kuvastavat 
amplitudimodulaatiota tai kahden taajuuden välistä interferenssiä (ns. taajuuslyönti-
ilmiö). 

Huomio 50 Hz -komponentista: 50 Hz on Euroopassa standardi sähköverkon taajuus, ja se voi 
esiintyä mittausdatan taajuusspektrissä sähköverkkohäiriönä tai verkkosähkön aiheuttamana 
induktiona. Toisaalta 50 Hz voi myös liittyä mekaanisiin ilmiöihin, kuten moottorin 
pyörimisnopeuteen tai jonkin muun koneen osan, kuten toisen sahanterän, toimintaan – etenkin 
jos eri terät pyörivät hieman eri nopeuksilla. Ilman lisämittauksia tai referenssitaajuuksia ei voida 
varmuudella osoittaa, onko kyseessä häiriö vai mekaaninen lähde, minkä vuoksi 50 Hz -
komponentti tulkitaan tässä alustavasti avoimesti. 



 

 

Kuva 2. Fourier-muunnos yhdestä mittausjaksosta (sensorin Y-akseli). 

Datan perusteella voidaan todeta, että mitattu signaali sisältää rakenteellisesti jaksollisia 
piirteitä, jotka toistuvat eri mittausjaksoissa. Tämä viittaa siihen, että mittausjärjestelmä 
kykenee havaitsemaan mekaanisia muutoksia koneen toiminnassa. Tarkempi analyysi viittaa 
lisäksi siihen, että signaalissa saattaa esiintyä kaksi lähekkäistä sinimuotoista komponenttia, 
joiden välinen vaihe vaihtelee ajan myötä. Tämä ilmiö voi johtua kahdesta erillisestä 
värähtelylähteestä – esimerkiksi sahan ylä- ja alaterästä, jos ne pyörivät hieman eri nopeuksilla – 
tai yhdestä leveäkaistaisesta lähteestä, jonka spektri jakautuu eri taajuusalueille analyysissa. 
Nykyisen aineiston perusteella ilmiön tarkkaa alkuperää ei voida yksiselitteisesti vahvistaa, 
mutta se tarjoaa jatkotutkimukselle kiinnostavan lähtökohdan. 

Vaikka tässä vaiheessa ei ole tehty koneoppimiseen perustuvaa luokittelua tai tilastollista 
mallinnusta, voidaan alustavasti arvioida seuraavaa: 

• signaalin rakenne on monimuotoinen ja potentiaalisesti informatiivinen. 
• taajuuskomponenttien muutoksia (amplitudi, sijainti, leveys) voidaan hyödyntää koneen 

kunnon arviointiin. 
• data sisältää piirteitä, joiden perusteella terän kulumista voitaisiin arvioida 

jatkokehityksen avulla. 

Jatkoanalyysissä tullaan yhdistämään tärinäsignaalin aikataso- ja taajuuspiirteet manuaalisesti 
kirjattuihin terän vaihtotapahtumiin. Tämän avulla pyritään testaamaan hypoteesia, jonka 
mukaan värähtelysignaalin rakenteessa esiintyisi systemaattisia muutoksia terän kulumisen tai 
vaurion lähestyessä. 

3. Data-analyysi ja tulkinta (vAI:lla tuottavuutta) 
3.1 Analyysin tavoite ja lähtökohdat 
Analyysin tavoitteena oli selvittää, voidaanko sahan toimintaa kuvaavasta värähtelydatasta 
päätellä terän kunnon heikkenemistä ennen varsinaista vaihtoa. Tällä hetkellä teränvaihto 
perustuu pääosin käyttäjän aistinvaraiseen arvioon leikkuujäljestä ja kuormitusäänestä, mikä voi 
johtaa joko liian aikaisiin tai myöhäisiin toimenpiteisiin. Automaattisesti mitattavan ja tulkittavan 
datan hyödyntäminen voisi tukea päätöksentekoa tarjoamalla objektiivista lisätietoa 
kunnossapidon ajoitukseen. 



Lähtökohtana oli MOI Hub -projektin toteuttama anturiperusteinen värähtelydatan keräys, joka 
kattoi usean viikon mittausjakson tuotantokäytössä olevan koneen rungosta. Datan 
mittaustaajuus oli noin 400 Hz, ja mittaukset toteutettiin 30 sekunnin jaksoina noin 10 minuutin 
välein. Aineisto sisälsi myös manuaalisesti kirjatut teränvaihtotapahtumat, jotka mahdollistivat 
mallin opettamisen tunnistamaan käyttötilanteet, joissa terän kuluminen oli edennyt vaihtoa 
vaativaksi. 

Analyysi toteutettiin osana vAI:lla tuottavuutta -projektia. Tavoitteena ei ollut kehittää valmista 
päätöksenteon työkalua, vaan rakentaa ensimmäinen mallinnusketju ja testata koneoppimisen 
soveltuvuutta värähtelydatan tulkintaan. Tärkeänä tavoitteena oli myös arvioida, kuinka 
luotettavaa ja informatiivista nykyinen mittausdata on, ja mitkä ovat keskeiset kehityskohdat 
jatkoa ajatellen. 

3.2 Analyysin toteutusvaiheet 
Analyysissa hyödynnettiin MOI Hub -projektin tuottamaa kiihtyvyysdataa, joka oli kerätty 
kolmessa suunnassa (X, Y, Z) sahan rungosta. Data jaettiin minuutin mittaisiin jaksoihin, joista 
muodostettiin koneoppimismallin tarvitsemat syöteominaisuudet. Yksi mittausjakso sisälsi 
useita tällaisia minuutin alijaksoja, joiden avulla signaalin ajallinen kehittyminen saatiin kuvattua 
vaiheittain. 

Jokaisesta minuutin ikkunasta laskettiin seuraavat ominaisuudet erikseen kullekin 
mittaussuunnalle: 

• Keskiarvo, keskihajonta, minimi- ja maksimiarvo 

• Havaintojen lukumäärä, jolla varmistettiin mittausjakson luotettavuus 

Näiden perusominaisuuksien lisäksi muodostettiin ns. viivepiirteitä, jotka kuvasivat aiempien 
aikajaksojen arvoja, sekä muutosnopeuksia, joiden avulla voitiin tunnistaa signaalin 
dynamiikkaa. Lisäksi käytettiin aikapiirteitä, kuten kellonaikaa ja viikonpäivää, jotka voivat 
selittää tuotantoon liittyvää rytmiä. 

Koneoppimisen kohdeluokka (target) muodostettiin manuaalisesti kirjatuista 
teränvaihtotapahtumista, jotka kohdistettiin aikatasolle minuutin tarkkuudella. Näiden avulla 
luotiin binäärinen tavoitemuuttuja, jossa 1 merkitsi “terä vaihdettu lähiaikoina” ja 0 “ei vaihtoa”. 

Varsinaisena mallina käytettiin Random Forest Classifier -algoritmia. Se valittiin analyysiin sen 
vakiintuneen käytön ja tulkittavuuden vuoksi. Malli koulutettiin erikseen valitulla opetusjaksolla 
ja testattiin erillisellä, myöhemmällä ajanjaksolla. Ennusteet tuotettiin todennäköisyyksinä, ja 
tulkintaa varten määritettiin kiinteä kynnysarvo, jonka ylittyessä mallin katsottiin ennustavan 
vaihtotarpeen. 

3.3 Tulokset ja mallin toiminta 
Koulutettu malli testattiin erillisellä datajaksolla, johon sisältyi useita todellisia teränvaihtoja. 
Ennusteet tuotettiin minuuttitasolla siten, että jokaiselle aikajaksolle laskettiin todennäköisyys 
sille, että teränvaihtotarve on lähellä. Kun ennustettu todennäköisyys ylitti ennalta asetetun 
kynnysarvon, tilanne tulkittiin varoitukseksi tai ehdotukseksi vaihtotarpeesta. 

Testijaksolla malli kykeni tunnistamaan noin kolmanneksen todellisista teränvaihdoista. Samalla 
se antoi useita ylimääräisiä signaaleja tilanteissa, joissa vaihtoa ei ollut kirjattu. Tämä viittaa 



siihen, että malli tunnisti tiettyjä signaalipiirteitä johdonmukaisesti, mutta tarkkuus ei vielä 
riittänyt luotettavaan käyttöön yksinään. 

Suorituskykyä arvioitiin seuraavien mittarien avulla: 

• Herkkyys (Recall): 0.36 
→ Malli tunnisti 36 % todellisista vaihtotapahtumista 

• Tarkkuus (Precision): 0.31 
→ Ennusteista 31 % osui todelliseen vaihtotapahtumaan 

• F1-score: 0.33 
→ Yhdistää recallin ja precisionin yhteen mittariin 

Tämä suorituskyky on odotettu ottaen huomioon rajallinen määrä teränvaihtotapahtumia ja 
mahdollinen epävarmuus vaihtojen ajoituksessa. Tulokset osoittavat kuitenkin, että mallin 
tuottamat signaalit eivät ole satunnaisia, vaan ne seuraavat selvästi mitattavissa olevia piirteitä 
tärinädatassa. 

Seuraavassa osiossa tarkastellaan mallin toimintaa yksityiskohtaisemmin visuaalisella tasolla. 

3.4 Visualisointi ja mallin käyttäytyminen 
Mallin käyttäytymistä tarkasteltiin myös visuaalisesti, jotta voitiin arvioida, missä määrin 
ennusteet asettuivat loogisesti suhteessa värähtelysignaaliin ja toteutuneisiin teränvaihtoihin. 
Alla olevassa kuvassa (Kuva 3) on esitetty kolmen kiihtyvyysakselin keskihajonta (vasen asteikko) 
sekä mallin tuottama vaihtotodennäköisyys (violetti viiva, oikea asteikko) testijakson ajalta. 

 

 

Kuva 3.  Kiihtyvyyden keskihajonta (XYZ), mallin ennustama vaihtotodennäköisyys, sekä toteutuneet (punaiset 
katkoviivat) ja ennustetut (mustat viivat) teränvaihdot. 

Kuvasta havaitaan, että mallin ennusteet kasautuvat ajankohtiin, joissa Y-akselin tärinän 
keskihajonta kasvaa selvästi. Joissain tapauksissa mallin antama todennäköisyys alkaa nousta 



useita minuutteja ennen todellista vaihtoa, mikä tukee oletusta siitä, että koneen tärinän rakenne 
muuttuu jo ennen kuin vaihtotarve havaitaan käyttäjän toimesta. 

Samalla nähdään, että mallilla esiintyy ennusteita myös ajanjaksoina, jolloin vaihtoa ei 
tapahtunut. Näiden “väärien positiivisten” taustalla voi olla kaksi mahdollista selitystä: 

1. Mittaustietoon perustuva varhainen merkki, joka ei vielä johtanut vaihtopäätökseen. 

2. Kohdeluokan epävarmuus, eli vaihtotapahtuman ajoitus ei ole kirjautunut tarkasti 
suhteessa mittausjaksoihin. 

Visuaalinen tarkastelu vahvistaa käsitystä siitä, että signaalissa on toistuvaa rakennetta, jonka 
perusteella malli kykenee reagoimaan. Erityisesti Y-akselin tärinä on osoittautunut diagnostisesti 
merkittäväksi komponentiksi, ja sen vaihtelun liittäminen muihin mittareihin voisi parantaa 
tarkkuutta jatkossa. 

4. Yhteenveto ja jatkokehityksen mahdollisuudet 
Pilotin tavoitteena oli testata matalakustannuksisen IoT-teknologian ja tekoälypohjaisen 
analyysin yhdistämistä teollisessa tuotantoympäristössä. Kohdeyrityksenä toimineella Skaala 
IFN Oy:llä oli tarve kehittää teränvaihtojen ajoitusta kohti mitattuun tietoon perustuvaa 
toimintamallia. Tällä hetkellä vaihtopäätökset perustuvat pääosin käyttäjien kokemukseen ja 
aistinvaraisiin havaintoihin, mikä altistaa prosessin vaihtelulle ja voi johtaa joko liian aikaisiin tai 
viivästyneisiin toimenpiteisiin. 

MOI Hub -projektin osuudessa toteutettiin anturiperusteinen datankeruujärjestelmä, joka 
osoitti kykenevänsä tuottamaan analyysiin soveltuvaa värähtelydataa tuotantoympäristöstä. 
Kerätty data kattoi usean viikon mittausjakson, ja siihen yhdistettiin manuaalisesti kirjatut 
teränvaihtotiedot. 

vAI:lla tuottavuutta -projektissa testattiin koneoppimismenetelmää (Random Forest), jonka 
tavoitteena oli tunnistaa tärinädatan perusteella vaihtotarpeen ennusmerkkejä. Vaikka mallin 
suorituskyky ei vielä ollut tuotantokäyttöön riittävä, se kykeni tunnistamaan osan 
vaihtotapahtumista ennakoivasti. Analyysi osoitti, että erityisesti tärinän keskihajonta sisältää 
toistuvaa rakennetta, jonka yhteys terän kulumiseen vaikuttaa lupaavalta – mutta ei vielä 
varmistetulta. 

Keskeiset havainnot voidaan tiivistää seuraavasti: 

• Sensoridata sisältää toistuvia, mahdollisesti diagnostisia piirteitä, mutta sen riittävyys 
terän kunnon arviointiin edellyttää jatkovalidointia. 

• Alustava koneoppimismalli osoitti suuntaa-antavaa ennustekykyä, mutta vaatii 
lisäaineistoa ja tarkempia kohdetietoja kehittyäkseen käyttökelpoiseksi työkaluksi. 

• Manuaalinen metadata (teränvaihdot) on kriittinen osa mallin koulutusta ja vaatii 
jatkossa tarkempaa ja ajallisesti täsmällisempää kirjaamista. 

Jatkokehityksen kannalta keskeisiä toimenpiteitä ovat: 

• Mittausaikajakson laajentaminen ja vaihtotapahtumien systemaattinen kirjaaminen. 



• Mallin yhdistäminen muihin tuotantodatan lähteisiin (esim. kuormitus, tehonkulutus, 
tuotantonopeus). 

• Mahdollisuus siirtyä reaaliaikaiseen analytiikkaan ja varoitusjärjestelmään. 

• Soveltuvuuden arviointi muihin konetyyppeihin tai tuotantopisteisiin. 

Pilotin tulokset osoittavat, että tärinään perustuva konekunnon seuranta on teknisesti 
mahdollista, ja sen analysointi koneoppimisen avulla tarjoaa potentiaalin kehittää objektiivista 
tukitietoa kunnossapitoon. Kuitenkin – ennen käyttöönottoa – tarvitaan lisää validointia ja 
ymmärrystä siitä, mitä signaalissa todella mitataan ja kuinka yksikäsitteisesti se liittyy terän 
kulumiseen. 

 


